Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50017896" target="_blank" >RIV/62690094:18470/21:50017896 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10958-020-05148-7" target="_blank" >https://link.springer.com/article/10.1007/s10958-020-05148-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-020-05148-7" target="_blank" >10.1007/s10958-020-05148-7</a>
Alternative languages
Result language
angličtina
Original language name
Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf
Original language description
In this paper, we consider the operator sheaf − Δ + V+ εℒ ε(λ) + λ2 in the space L2(ℝ2), where the real-valued potential V depends only on the first variable x1, ε is a small positive parameter, λ is the spectral parameter, ℒ ε(λ) is a localized operator bounded with respect to the Laplacian −Δ, and the essential spectrum of this operator is independent of ε and contains certain critical points defined as isolated eigenvalues of the operator −d2dx12+V(x1) in L2(ℝ). The basic result obtained in this paper states that for small values of ε, in neighborhoods of critical points mentioned, isolated eigenvalues of the sheaf considered arise. Sufficient conditions for the existence or absence of such eigenvalues are obtained. The number of arising eigenvalues is determined, and in the case where they exist, the first terms of their asymptotic expansions are found. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of mathematical sciences
ISSN
1072-3374
e-ISSN
—
Volume of the periodical
252
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
135-146
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85096397232