All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50017896" target="_blank" >RIV/62690094:18470/21:50017896 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10958-020-05148-7" target="_blank" >https://link.springer.com/article/10.1007/s10958-020-05148-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10958-020-05148-7" target="_blank" >10.1007/s10958-020-05148-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Perturbations of the Continuous Spectrum of a Certain Nonlinear Two-Dimensional Operator Sheaf

  • Original language description

    In this paper, we consider the operator sheaf − Δ + V+ εℒ ε(λ) + λ2 in the space L2(ℝ2), where the real-valued potential V depends only on the first variable x1, ε is a small positive parameter, λ is the spectral parameter, ℒ ε(λ) is a localized operator bounded with respect to the Laplacian −Δ, and the essential spectrum of this operator is independent of ε and contains certain critical points defined as isolated eigenvalues of the operator −d2dx12+V(x1) in L2(ℝ). The basic result obtained in this paper states that for small values of ε, in neighborhoods of critical points mentioned, isolated eigenvalues of the sheaf considered arise. Sufficient conditions for the existence or absence of such eigenvalues are obtained. The number of arising eigenvalues is determined, and in the case where they exist, the first terms of their asymptotic expansions are found. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of mathematical sciences

  • ISSN

    1072-3374

  • e-ISSN

  • Volume of the periodical

    252

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    135-146

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85096397232