A Gelfand-Levitan trace formula for generic quantum graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50017937" target="_blank" >RIV/62690094:18470/21:50017937 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s13324-021-00487-3" target="_blank" >https://link.springer.com/article/10.1007/s13324-021-00487-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13324-021-00487-3" target="_blank" >10.1007/s13324-021-00487-3</a>
Alternative languages
Result language
angličtina
Original language name
A Gelfand-Levitan trace formula for generic quantum graphs
Original language description
We formulate and prove a Gelfand-Levitan trace formula for general quantum graphs with arbitrary edge lengths and coupling conditions which cover all self-adjoint operators on quantum graphs, except for a set of measure zero. The formula is reminiscent of the original Gelfand-Levitan result on the segment with Neumann boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ANALYSIS AND MATHEMATICAL PHYSICS
ISSN
1664-2368
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
19
Pages from-to
"Article Number: 56"
UT code for WoS article
000620506800003
EID of the result in the Scopus database
2-s2.0-85100916185