Prediction of surface air temperatures by neural network, example based on three-year temperature monitoring at Spořilov station.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F03%3A03030011" target="_blank" >RIV/67985530:_____/03:03030011 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Prediction of surface air temperatures by neural network, example based on three-year temperature monitoring at Spořilov station.
Original language description
Artificial time-delay feed-forward neural networks with one hidden layer and error back-propagation learning are used to predict surface air temperatures for six hours up to one day. The networks were trained and tested with the use of data covering a total of 26280 hours monitored in the period 1998-2000 in location Spořilov (suburban area of Prague).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
DB - Geology and mineralogy
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA3012005" target="_blank" >IAA3012005: Recent Climate Change and Its Contingent Anthropogenic Component Revealed by Inversion of Present Temperature Data Measured in Boreholes</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia geophysica et geodaetica
ISSN
0039-3169
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
12
Pages from-to
173-184
UT code for WoS article
—
EID of the result in the Scopus database
—