Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00381750" target="_blank" >RIV/67985556:_____/12:00381750 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities
Original language description
Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are finite on the positive and infinite on the negative numbers, strictly convex but not necessarily differentiable. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The effective domain of the value function is described by a conic core, a modification of the earlier concept of convex core. Minimizers andgeneralized minimizers are explicitly constructed from solutions of modified dual problems, not assuming the primal constraint qualification. A-generalized Pythagorean identity is presented using Bregman distance and a correction term for lack of essential smoothness in integrands. Results are applied to minimization of Bregman distances. Existence of a generalized dual solution is established whenever the dual value is finite, assuming the dual constraint qualification. Examples of "irr
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kybernetika
ISSN
0023-5954
e-ISSN
—
Volume of the periodical
48
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
53
Pages from-to
637-689
UT code for WoS article
000310190200004
EID of the result in the Scopus database
—