Generalized minimizers of convex integral functionals and Pythagorean identities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00397249" target="_blank" >RIV/67985556:_____/13:00397249 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-40020-9_32" target="_blank" >http://dx.doi.org/10.1007/978-3-642-40020-9_32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-40020-9_32" target="_blank" >10.1007/978-3-642-40020-9_32</a>
Alternative languages
Result language
angličtina
Original language name
Generalized minimizers of convex integral functionals and Pythagorean identities
Original language description
Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The effective domain of the value function is described by a modification of the concept of convex core. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The minimizers and generalized minimizers are explicitly described whenever the primal value is finite, assuming a dual constraint qualification but not the primal constraint qualification. A generalized Pythagorean identity is presented using Bregman distance and a correction term.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Geometric Science of Information 2013
ISBN
978-3-642-40019-3
ISSN
0302-9743
e-ISSN
—
Number of pages
6
Pages from-to
302-307
Publisher name
Springer
Place of publication
Berlin
Event location
Paris
Event date
Aug 28, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—