Minimization of Entropy Functionals Revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00381751" target="_blank" >RIV/67985556:_____/12:00381751 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/ISIT.2012.6283516" target="_blank" >http://dx.doi.org/10.1109/ISIT.2012.6283516</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISIT.2012.6283516" target="_blank" >10.1109/ISIT.2012.6283516</a>
Alternative languages
Result language
angličtina
Original language name
Minimization of Entropy Functionals Revisited
Original language description
Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are assumed to be strictly convex but not autonomous or differentiable. The effective domain of the value function is described by a modification of the concept of convex core. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. Main results assume a dual constraint qualification but dispense with the primal constraint qualification. Minimizers and generalized minimizers are explicitly described whenever the primal value is finite. Existence of a generalized dual solution is established whenever the dual value is finite. A generalized Pythagorean identity ispresented using Bregman distance and a correction term. Results are applied to minimization of Bregman distances.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the IEEE International Symposium on Information Theory Proceedings (ISIT), 2012
ISBN
978-1-4673-2579-0
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
150-154
Publisher name
IEEE
Place of publication
Cambridge
Event location
Cambridge
Event date
Jul 1, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000312544300031