Generation of linear orders for intervals by means of aggregation functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00391392" target="_blank" >RIV/67985556:_____/13:00391392 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2012.07.015" target="_blank" >http://dx.doi.org/10.1016/j.fss.2012.07.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2012.07.015" target="_blank" >10.1016/j.fss.2012.07.015</a>
Alternative languages
Result language
angličtina
Original language name
Generation of linear orders for intervals by means of aggregation functions
Original language description
The problem of choosing an appropriate total order is crucial for many applications that make use of extensions of fuzzy sets. In this work we introduce the concept of an admissible order as a total order that extends the usual partial order between intervals.We propose a method to build these admissible orders in terms of two aggregation functions and we prove that some of the most used examples of total orders that appear in the literature are specific cases of our construction.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP402%2F11%2F0378" target="_blank" >GAP402/11/0378: Aggregation of knowledge and expectations in the models of mathematical economics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
220
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
69-77
UT code for WoS article
000317886300005
EID of the result in the Scopus database
—