On stabilisability of 2-D MIMO shift-invariant systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00398772" target="_blank" >RIV/67985556:_____/13:00398772 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jfranklin.2013.05.021" target="_blank" >http://dx.doi.org/10.1016/j.jfranklin.2013.05.021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfranklin.2013.05.021" target="_blank" >10.1016/j.jfranklin.2013.05.021</a>
Alternative languages
Result language
angličtina
Original language name
On stabilisability of 2-D MIMO shift-invariant systems
Original language description
We concentrate on the linear spatially distributed time-invariant two-dimensional systems with multiple inputs and multiple outputs and with control action based on an array of sensors and actuators connected to the system. The system is described by thebivariate matrix polynomial fraction. Stabilisation of such systems is based on the relationship between stability of a bivariate polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are not linear in the controller parameters, however, in simple cases, a linearising factorisation exists. It allows to describe the control design in the form of a linear matrix inequality. In more complicated cases, linear sufficient conditions are given. This concept is applied toa system with multiple outputs?a heat conduction in a long thin metal rod equipped with an array of temperature sensors and heaters, where heaters are placed in larger distances than sensors.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GPP103%2F12%2FP494" target="_blank" >GPP103/12/P494: Modelling and control of spatially distributed systems via polynomial approach</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the Franklin Institute-Engineering and Applied Mathematics
ISSN
0016-0032
e-ISSN
—
Volume of the periodical
350
Issue of the periodical within the volume
10
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
2949-2966
UT code for WoS article
000327909800008
EID of the result in the Scopus database
—