Non-parametric Bayesian models of response function in dynamic image sequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00456983" target="_blank" >RIV/67985556:_____/16:00456983 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.cviu.2015.11.010" target="_blank" >http://dx.doi.org/10.1016/j.cviu.2015.11.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cviu.2015.11.010" target="_blank" >10.1016/j.cviu.2015.11.010</a>
Alternative languages
Result language
angličtina
Original language name
Non-parametric Bayesian models of response function in dynamic image sequences
Original language description
Estimation of response functions is an important task in dynamic medical imaging. This task arises for example in dynamic renal scintigraphy, where impulse response or retention functions are estimated, or in functional magnetic resonance imaging where hemodynamic response functions are required. These functions can not be observed directly and their estimation is complicated because the recorded images are subject to superposition of underlying signals. Therefore, the response functions are estimated via blind source separation and deconvolution. Performance of this algorithm heavily depends on the used models of the response functions. Response functions in real image sequences are rather complicated and finding a suitable parametric form is problematic. In this paper, we study estimation of the response functions using non-parametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-29225S" target="_blank" >GA13-29225S: Image Blind Deconvolution in Demanding Conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Vision and Image Understanding
ISSN
1077-3142
e-ISSN
—
Volume of the periodical
151
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
90-100
UT code for WoS article
000385338900009
EID of the result in the Scopus database
2-s2.0-84990911120