All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-parametric Bayesian models of response function in dynamic image sequences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00456983" target="_blank" >RIV/67985556:_____/16:00456983 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.cviu.2015.11.010" target="_blank" >http://dx.doi.org/10.1016/j.cviu.2015.11.010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cviu.2015.11.010" target="_blank" >10.1016/j.cviu.2015.11.010</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-parametric Bayesian models of response function in dynamic image sequences

  • Original language description

    Estimation of response functions is an important task in dynamic medical imaging. This task arises for example in dynamic renal scintigraphy, where impulse response or retention functions are estimated, or in functional magnetic resonance imaging where hemodynamic response functions are required. These functions can not be observed directly and their estimation is complicated because the recorded images are subject to superposition of underlying signals. Therefore, the response functions are estimated via blind source separation and deconvolution. Performance of this algorithm heavily depends on the used models of the response functions. Response functions in real image sequences are rather complicated and finding a suitable parametric form is problematic. In this paper, we study estimation of the response functions using non-parametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-29225S" target="_blank" >GA13-29225S: Image Blind Deconvolution in Demanding Conditions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computer Vision and Image Understanding

  • ISSN

    1077-3142

  • e-ISSN

  • Volume of the periodical

    151

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    90-100

  • UT code for WoS article

    000385338900009

  • EID of the result in the Scopus database

    2-s2.0-84990911120