All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Expert-based Initialization of Recursive Mixture Estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00462356" target="_blank" >RIV/67985556:_____/16:00462356 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/IS.2016.7737439" target="_blank" >http://dx.doi.org/10.1109/IS.2016.7737439</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IS.2016.7737439" target="_blank" >10.1109/IS.2016.7737439</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Expert-based Initialization of Recursive Mixture Estimation

  • Original language description

    Initialization is an extremely important part of the mixture estimation process. There exists a series of initialization approaches in the literature concerning the mixture initialization. However, the majority of them is directed at initialization of the expectation-maximization algorithm widely used in this area. This paper focuses on the initialization of the mixture estimation with normal components based on the recursive statistics update of involved distributions, where the mentioned methods are not suitable. Its key part is the choice of the initial statistics. The paper describes several relatively simple initialization techniques primarily based on processing the prior data. The experimental part of the paper represents results of validation on real data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-03564S" target="_blank" >GA15-03564S: Clustering and classification using recursive mixture estimation</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 2016 IEEE 8th International Conference on Intelligent Systems

  • ISBN

    978-1-5090-1353-1

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    308-315

  • Publisher name

    IEEE

  • Place of publication

    Sofia

  • Event location

    Sofia

  • Event date

    Sep 4, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000391554300044