All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fully probabilistic design of hierarchical Bayesian models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00463052" target="_blank" >RIV/67985556:_____/16:00463052 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.ins.2016.07.035" target="_blank" >http://dx.doi.org/10.1016/j.ins.2016.07.035</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2016.07.035" target="_blank" >10.1016/j.ins.2016.07.035</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fully probabilistic design of hierarchical Bayesian models

  • Original language description

    The minimum cross-entropy principle is an established technique for design of an un- known distribution, processing linear functional constraints on the distribution. More generally, fully probabilistic design (FPD) chooses the distribution-within the knowledge-constrained set of possible distributions-for which the Kullback-Leibler divergence to the designer’s ideal distribution is minimized. These principles treat the unknown distribution deterministically. In this paper, fully probabilistic design is applied to hierarchical Bayesian models for the first time, yielding optimal design of a (possibly nonparametric) stochastic model for the unknown distribution. This equips minimum cross-entropy and FPD distributional estimates with measures of uncertainty. It enables robust choice of the optimal model, as well as randomization of this choice. The ability to process non-linear functional constraints in the constructed distribution significantly extends the applicability of these principles.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-13502S" target="_blank" >GA13-13502S: Fully Probabilistic Design of Dynamic Decision Strategies for Imperfect Participants in Market Scenarios</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Information Sciences

  • ISSN

    0020-0255

  • e-ISSN

  • Volume of the periodical

    369

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    532-547

  • UT code for WoS article

    000383292500035

  • EID of the result in the Scopus database

    2-s2.0-84978967308