The Brownian web, the Brownian net, and their universality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F16%3A00476050" target="_blank" >RIV/67985556:_____/16:00476050 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/9781316403877.007" target="_blank" >http://dx.doi.org/10.1017/9781316403877.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/9781316403877.007" target="_blank" >10.1017/9781316403877.007</a>
Alternative languages
Result language
angličtina
Original language name
The Brownian web, the Brownian net, and their universality
Original language description
The Brownian web is a collection of one-dimensional coalescing Brownian motions starting from everywhere in space and time, and the Brownian net is a generalization that also allows branching. They appear in the diffusive scaling limits of many one-dimensional interacting particle systems with branching and coalescence. This article gives an introduction to the Brownian web and net, and how they arise in the scaling limits of various one-dimensional models, focusing mainly on coalescing random walks and random walks in id. space-time random environments. We will also briefly survey models and results connected to the Brownian web and net, including alternative topologies, population genetic models, true self-repelling motion, planar aggregation, drainage networks, oriented percolation, black noise and critical percolation. Some open questions are discussed at the end.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-08819S" target="_blank" >GA15-08819S: Stochastic Processes in Infinite Dimensional Spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Advances in Disordered Systems, Random Processes and Some Applications
ISBN
9781107124103
Number of pages of the result
99
Pages from-to
270-368
Number of pages of the book
380
Publisher name
Cambridge University Press
Place of publication
Cambridge
UT code for WoS chapter
—