All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Clustering with a Model of Sub-Mixtures of Different Distributions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F17%3A00478195" target="_blank" >RIV/67985556:_____/17:00478195 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/SISY.2017.8080574" target="_blank" >http://dx.doi.org/10.1109/SISY.2017.8080574</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SISY.2017.8080574" target="_blank" >10.1109/SISY.2017.8080574</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Clustering with a Model of Sub-Mixtures of Different Distributions

  • Original language description

    This paper deals with a modeling of data by several mixtures of different distributions within a task of clustering. This issue can be required from a practical point of view, e.g., for a multi-modal system, which generates measurements described by different distributions. The approach is based on the partition of the data on several parts, the factorization of the joint probability density function according to these parts and the estimation of each conditional mixture separately. Due to the data-based construction of the general model from the estimated components, the most suitable combination of the components is used at each time instant. The illustrative experiments are demonstrated.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA15-03564S" target="_blank" >GA15-03564S: Clustering and classification using recursive mixture estimation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of IEEE 15th International Symposium on Intelligent Systems and Informatics SISY 2017

  • ISBN

    978-1-5386-3854-5

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    315-320

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Subotica

  • Event date

    Sep 14, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000427311500056