All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lindenbaum and Pair Extension Lemma in Infinitary Logics

Result description

The abstract Lindenbaum lemma is a crucial result in algebraic logic saying that the prime theories form a basis of the closure systems of all theories of an arbitrary given logic. Its usual formulation is however limited to finitary logics, i.e., logics with Hilbert-style axiomatization using finitary rules only. In this contribution, we extend its scope to all logics with a countable axiomatization and a well-behaved disjunction connective. We also relate Lindenbaum lemma to the Pair extension lemma, other well-known result with many applications mainly in the theory of non-classical modal logics. While a restricted form of this lemma (to pairs with finite right-hand side) is, in our context, equivalent to Lindenbaum lemma, we show a perhaps surprising result that in full strength it holds for finitary logics only. Finally we provide examples demonstrating both limitations and applications of our results.

Keywords

Lindenbaum lemmaPair extension lemmaInfinitary logicInfinitary deduction ruleStrong disjunctionPrime theory

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lindenbaum and Pair Extension Lemma in Infinitary Logics

  • Original language description

    The abstract Lindenbaum lemma is a crucial result in algebraic logic saying that the prime theories form a basis of the closure systems of all theories of an arbitrary given logic. Its usual formulation is however limited to finitary logics, i.e., logics with Hilbert-style axiomatization using finitary rules only. In this contribution, we extend its scope to all logics with a countable axiomatization and a well-behaved disjunction connective. We also relate Lindenbaum lemma to the Pair extension lemma, other well-known result with many applications mainly in the theory of non-classical modal logics. While a restricted form of this lemma (to pairs with finite right-hand side) is, in our context, equivalent to Lindenbaum lemma, we show a perhaps surprising result that in full strength it holds for finitary logics only. Finally we provide examples demonstrating both limitations and applications of our results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Logic, Language, Information and Computation

  • ISBN

    978-3-662-57668-7

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    130-144

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Bogotá

  • Event date

    Jul 24, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

Basic information

Result type

D - Article in proceedings

D

OECD FORD

Pure mathematics

Year of implementation

2018