All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lindenbaum and Pair Extension Lemma in Infinitary Logics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00491981" target="_blank" >RIV/67985556:_____/18:00491981 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/18:00491981 RIV/00216208:11210/18:10385612

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-662-57669-4_7" target="_blank" >http://dx.doi.org/10.1007/978-3-662-57669-4_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-662-57669-4_7" target="_blank" >10.1007/978-3-662-57669-4_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lindenbaum and Pair Extension Lemma in Infinitary Logics

  • Original language description

    The abstract Lindenbaum lemma is a crucial result in algebraic logic saying that the prime theories form a basis of the closure systems of all theories of an arbitrary given logic. Its usual formulation is however limited to finitary logics, i.e., logics with Hilbert-style axiomatization using finitary rules only. In this contribution, we extend its scope to all logics with a countable axiomatization and a well-behaved disjunction connective. We also relate Lindenbaum lemma to the Pair extension lemma, other well-known result with many applications mainly in the theory of non-classical modal logics. While a restricted form of this lemma (to pairs with finite right-hand side) is, in our context, equivalent to Lindenbaum lemma, we show a perhaps surprising result that in full strength it holds for finitary logics only. Finally we provide examples demonstrating both limitations and applications of our results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Logic, Language, Information and Computation

  • ISBN

    978-3-662-57668-7

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    130-144

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Bogotá

  • Event date

    Jul 24, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article