On a Semismooth* Newton Method for Solving Generalized Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00541231" target="_blank" >RIV/67985556:_____/21:00541231 - isvavai.cz</a>
Result on the web
<a href="https://epubs.siam.org/doi/10.1137/19M1257408" target="_blank" >https://epubs.siam.org/doi/10.1137/19M1257408</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/19M1257408" target="_blank" >10.1137/19M1257408</a>
Alternative languages
Result language
angličtina
Original language name
On a Semismooth* Newton Method for Solving Generalized Equations
Original language description
In the paper, a Newton-type method for the solution of generalized equations (GEs) is derived, where the linearization concerns both the single-valued and the multivalued part of the considered GE. The method is based on the new notion of semismoothness*, which, together with a suitable regularity condition, ensures the local superlinear convergence. An implementable version of the new method is derived for a class of GEs, frequently arising in optimization and equilibrium models.n
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-04301S" target="_blank" >GA17-04301S: Advanced mathematical methods for dissipative evolutionary systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Optimization
ISSN
1052-6234
e-ISSN
1095-7189
Volume of the periodical
31
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
489-517
UT code for WoS article
000636678300020
EID of the result in the Scopus database
2-s2.0-85102060544