Well-posedness of the 3D stochastic primitive equations with multiplicative and transport noise
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00546851" target="_blank" >RIV/67985556:_____/21:00546851 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022039621003521" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039621003521</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2021.05.049" target="_blank" >10.1016/j.jde.2021.05.049</a>
Alternative languages
Result language
angličtina
Original language name
Well-posedness of the 3D stochastic primitive equations with multiplicative and transport noise
Original language description
We show that the stochastic 3D primitive equations with the Neumann boundary condition on the top, the lateral Dirichlet boundary condition and either the Dirichlet or the Neumann boundary condition on the bottom driven by multiplicative gradient-dependent white noise have unique maximal strong solutions both in the stochastic and PDE senses under certain assumptions on the growth of the noise. For the case of the Neumann boundary condition on the bottom, global existence is established by using the decomposition of the vertical velocity to the barotropic and baroclinic modes and an iterated stopping time argument. An explicit example of non-trivial infinite dimensional noise depending on the vertical average of the horizontal gradient of horizontal velocity is presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
296
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
60
Pages from-to
617-676
UT code for WoS article
000670295000019
EID of the result in the Scopus database
2-s2.0-85108270000