Non-separable rotation moment invariants
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00555291" target="_blank" >RIV/67985556:_____/22:00555291 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0031320322000887?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0031320322000887?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patcog.2022.108607" target="_blank" >10.1016/j.patcog.2022.108607</a>
Alternative languages
Result language
angličtina
Original language name
Non-separable rotation moment invariants
Original language description
In this paper, we introduce new rotation moment invariants, which are composed of non-separable Appell moments. We prove that Appell polynomials behave under rotation as monomials, which enables easy construction of the invariants. We show by extensive tests that non-separable moments may outperform the separable ones in terms of recognition power and robustness thanks to a better distribution of their zero curves over the image space.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA21-03921S" target="_blank" >GA21-03921S: Inverse problems in image processing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pattern Recognition
ISSN
0031-3203
e-ISSN
1873-5142
Volume of the periodical
127
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
108607
UT code for WoS article
000784335600003
EID of the result in the Scopus database
2-s2.0-85125526639