On the rank of 2×2×2 probability tables
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00561326" target="_blank" >RIV/67985556:_____/22:00561326 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the rank of 2×2×2 probability tables
Original language description
Bayesian networks for real-world problems typically satisfy the property of positive monotonicity (in the context of educational testing, it is commonly assumed that answering correctly a question A increases the probability of answering correctly another question B). In this paper, we focus on the study of relations between positive monotonic influences on three-variable patterns and a family of 2×2×2 tensors. In this study, we use the Kruskal polynomial, well-known in the psychometrics community, which is equivalent to Cayley’s hyperdeterminant (homogeneous polynomial of degree 4 in the 8 entries of a 2×2×2 tensor). It is known that when the Kruskal polynomial is positive, the rank of the tensor is two. We show that when a probability table associated with three random variables obeys the positive monotonicity property, its corresponding 2×2×2 tensor has rank two. Moreover, it can be decomposed using only nonnegative tensors, which can each be given a statistical interpretation. We study two concepts of monotonicity in sets of three random variables, strong monotonicity (any two variables have a positive influence on the third one), and weak monotonicity (just one pair of variables that have a positive influence on the third one), and we give an example to show they do not coincide. Furthermore, we proved that the strong monotonicity property implies that the tensor rank is at most two. We also performed experiments with real data to test the monotonicity properties. The real datasets were formed by information from the Czech high school final exam from the years 2016 to 2022. These datasets are representative since the sample size (number of students) for each year is very large (N > 10000) and information comes from students of all regions of the Czech Republic. In this datasets, we observed that almost all 2×2×2 tensors are monotone and all their corresponding 2×2×2 tensors have nonnegative decomposition.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Machine Learning Research, Volume 186 : Proceedings of The 11th International Conference on Probabilistic Graphical Models
ISBN
—
ISSN
2640-3498
e-ISSN
2640-3498
Number of pages
12
Pages from-to
361-372
Publisher name
PMLR
Place of publication
Almerı́a
Event location
Almería
Event date
Oct 5, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—