Automatic Verb Classifier for Abui (AVC-abz)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00561726" target="_blank" >RIV/67985556:_____/22:00561726 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15210/22:73618983
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Automatic Verb Classifier for Abui (AVC-abz)
Original language description
We present an automatic verb classifier system that identifies inflectional classes in Abui (AVC-abz), a Papuan language of the Timor-Alor-Pantar family. The system combines manually annotated language data (the learning set) with the output of a morphological precision grammar (corpus data). The morphological precision grammar is trained on a fully glossed smaller corpus and applied to a larger corpus. Using the k-means algorithm, the system clusters inflectional classes discovered in the learning set. In the second step, Naive Bayes algorithm assigns the verbs found in the corpus data to the best-fitting cluster. AVC-abz serves to advance and refine the grammatical analysis of Abui as well as to monitor corpus coverage and its gradual improvement.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
60203 - Linguistics
Result continuities
Project
<a href="/en/project/GA20-18407S" target="_blank" >GA20-18407S: Verb Class Analysis Accelerator for Low-Resource Languages - RoboCorp</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Workshop on Resources and Technologies for Indigenous, Endangered and Lesser-resourced Languages in Eurasia within the 13th Language Resources and Evaluation Conference
ISBN
978-2-493814-07-4
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
42-50
Publisher name
European Language Resources Association
Place of publication
Paris
Event location
Marseille
Event date
Jun 20, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—