All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural Network Binary Factorization as a Tool for Large Dataset Clustering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F04%3A00031747" target="_blank" >RIV/67985807:_____/04:00031747 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural Network Binary Factorization as a Tool for Large Dataset Clustering

  • Original language description

    The feature space transformation is a widely used method for data compression. Due to this transformation the original patterns are mapped into the space of features or factors of reduced dimensionality. In this paper we demonstrate that Hebbian learningin Hopfield-like neural network is a natural procedure for binary factorization. This paper is dedicated to estimation of the size of attraction basins around factors. Two global spurious attractors are shown to prevent convergence of the network activity to the factors invalidating any procedure of their search. These global attractors can be completely deleted from network dynamics by introducing a single inhibitory neuron with bi-directional Hebbian synapses. Due to additional inhibition, the size of attraction basins around factors becomes the same as around the stored patterns in usual Hopfield network.

  • Czech name

    Binární faktorová analýza založená na neuronových sítích jako nástroj pro shlukování velkých datových souborů

  • Czech description

    Transformace prostoru příznaků je velmi častou metodou komprese dat.Prostor příznaků je transformován do prostoru faktorů o nižší dimenzi. Zde je ukázáno, že pro binární případ lze k tomuto účelu použít variantu Hopfieldovy NS. Studována je velikost oblastí atrakce po odstranění dvou globálních atraktorů pomocí jednoho neuronu s dvosměrnými Hebbovskými synapsemi a je ukázáno že oblasti atrakce kolem faktorů jsou řízeny stejnou zákonitostí jako u tradiční Hopfieldovy sítě.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F01%2F1192" target="_blank" >GA201/01/1192: Research of neural networks capability to provide nonlinear Boolean factor analysis</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2004

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ELNET 2004

  • ISBN

    80-248-0738-6

  • ISSN

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    64-88

  • Publisher name

    Technical University

  • Place of publication

    Ostrava

  • Event location

    Ostrava

  • Event date

    Dec 7, 2004

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article