Performance Comparison of Two Reinforcement Learning Algorithms for Small Mobile Robots
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00331131" target="_blank" >RIV/67985807:_____/09:00331131 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Performance Comparison of Two Reinforcement Learning Algorithms for Small Mobile Robots
Original language description
The design of intelligent agents by means of reinforcement learning is studied in this paper. A relational reinforcement learning algorithm is used to achieve a compact knowledge representation. Moreover, this approach allows to improve the learning performance by augmenting the algorithm with the so-called background knowledge. A case study on simulated physical robotic agents is performed and compared with our previous evolutionary robotics experiments in order to justify our approach.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0567" target="_blank" >1M0567: Centre for Applied Cybernetics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Control and Automation
ISSN
2005-4297
e-ISSN
—
Volume of the periodical
2
Issue of the periodical within the volume
1
Country of publishing house
KR - KOREA, REPUBLIC OF
Number of pages
10
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—