All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Near Neighbor Distribution in Fractal and Finite Sets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00365540" target="_blank" >RIV/67985807:_____/11:00365540 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/SoCPaR.2011.6089286" target="_blank" >http://dx.doi.org/10.1109/SoCPaR.2011.6089286</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SoCPaR.2011.6089286" target="_blank" >10.1109/SoCPaR.2011.6089286</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Near Neighbor Distribution in Fractal and Finite Sets

  • Original language description

    Distances of several nearest neighbors of a given point in a multidimensional space play important role in some tasks of data mining. Here we analyze these distances analyzed as random variables defined to be functions of a given point and its k-th nearest neighbor. We prove that if there is a constant q such that the mean k-th neighbor distance to this constant power is proportional to the near neighbor index k then its distance to this constant power converges to Erlang distribution of order k. We also show that constant q is the scaling exponent known from the theory of multifractals.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0567" target="_blank" >1M0567: Centre for Applied Cybernetics</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2011 International Conference of Soft Computing and Pattern Recognition SocPaR

  • ISBN

    978-1-4577-1195-4

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    452-457

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Dalian

  • Event date

    Oct 14, 2011

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article