Minimal Varieties of Representable Commutative Residuated Lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00383374" target="_blank" >RIV/67985807:_____/12:00383374 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11225-012-9456-1" target="_blank" >http://dx.doi.org/10.1007/s11225-012-9456-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11225-012-9456-1" target="_blank" >10.1007/s11225-012-9456-1</a>
Alternative languages
Result language
angličtina
Original language name
Minimal Varieties of Representable Commutative Residuated Lattices
Original language description
We solve several open problems on the cardinality of atoms in the subvariety lattice of residuated lattices and FL-algebras, we prove that the subvariety lattice of residuated lattices contains continuum many 4-potent commutative representable atoms. Analogous results apply also to atoms in the subvariety lattice of FLi-algebras and FLo-algebras. On the other hand, we show that the subvariety lattice of residuated lattices contains only five 3-potent commutative representable atoms and two integral commutative representable atoms. Inspired by the construction of atoms, we are also able to prove that the variety of integral commutative representable residuated lattices is generated by its 1-generated finite members.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F10%2F1826" target="_blank" >GAP202/10/1826: Mathematical Fuzzy Logic in Computer Science</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Logica
ISSN
0039-3215
e-ISSN
—
Volume of the periodical
100
Issue of the periodical within the volume
6
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
1063-1078
UT code for WoS article
000312346600002
EID of the result in the Scopus database
—