Archimedean Classes in Integral Commutative Residuated Chains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00159057" target="_blank" >RIV/68407700:21230/09:00159057 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Archimedean Classes in Integral Commutative Residuated Chains
Original language description
This paper investigates a quasi-variety of representable integral commutative residuated lattices axiomatized by the quasi-identity resulting from the well-known Wajsberg identity (p q) q (q p) p if it is written as a quasi-identity, i. e., (p q) q 1 (qp) p 1. We prove that this quasi-identity is strictly weaker than the corresponding identity. On the other hand, we show that the resulting quasi-variety is in fact a variety and provide an axiomatization. The obtained results shed some light on the structure of Archimedean integral commutative residuated chains. Further, they can be applied to various subvarieties of MTL-algebras, for instance we answer negatively Hájek's question asking whether the variety of MTL-algebras is generated by its Archimedean members
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Logic Quarterly
ISSN
0942-5616
e-ISSN
—
Volume of the periodical
55
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
—
UT code for WoS article
000267096600010
EID of the result in the Scopus database
—