All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Equality and Natural Numbers in Cantor-Lukasiewicz Set Theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00343863" target="_blank" >RIV/67985807:_____/13:00343863 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1093/jigpal/jzq019" target="_blank" >http://dx.doi.org/10.1093/jigpal/jzq019</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/jigpal/jzq019" target="_blank" >10.1093/jigpal/jzq019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Equality and Natural Numbers in Cantor-Lukasiewicz Set Theory

  • Original language description

    Two equality predicates in Cantor-Lukasiewicz set theory (with full comprehension, over Lukasiewicz predicate logic) are investigated: extensional =e and Leibniz equality =. It is proved that there are many pairs of sets x,y such that x =e y & x =/= y istrue. In particular, x may be the set omega of natural numbers, defined together with ternary predicates for addition and multiplication. The main result says that the Cantor-Lukasiewicz set theory is essentially undecidable and essentially incomplete.The proof is difficult since it is not supposed that the set omega is crisp (non-fuzzy).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Logic Journal of the IGPL

  • ISSN

    1367-0751

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    91-100

  • UT code for WoS article

    000313837700008

  • EID of the result in the Scopus database