All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Stochastic modeling of sunshine number data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00398524" target="_blank" >RIV/67985807:_____/13:00398524 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4832815" target="_blank" >http://dx.doi.org/10.1063/1.4832815</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4832815" target="_blank" >10.1063/1.4832815</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Stochastic modeling of sunshine number data

  • Original language description

    We present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and itwas shown to be useful both for theoretical and practical purposes, e.g. those related to the photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical modelfor SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact our logistic Markovian model can be fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of int

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LD12009" target="_blank" >LD12009: Advanced methods for energy production forecasting by photovoltaic systems using high resolution NWP models</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    TIM 2012 Physics Conference

  • ISBN

    978-0-7354-1192-0

  • ISSN

    1551-7616

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    178-187

  • Publisher name

    AIP Publishing LLC

  • Place of publication

    New York

  • Event location

    Timisoara

  • Event date

    Oct 27, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000327454500028