Cloud Shade by Dynamic Logistic Modeling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00420888" target="_blank" >RIV/67985807:_____/14:00420888 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/02664763.2013.862221" target="_blank" >http://dx.doi.org/10.1080/02664763.2013.862221</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02664763.2013.862221" target="_blank" >10.1080/02664763.2013.862221</a>
Alternative languages
Result language
angličtina
Original language name
Cloud Shade by Dynamic Logistic Modeling
Original language description
During the daytime, the sun is shining or not at ground level depending on clouds motion. Two binary variables may be used to quantify this process: the sunshine number (SSN) and the sunshine stability number (SSSN). The sequential features of SSN are treated in this paper by using Markovian Logistic Regression models, which avoid usual weaknesses of autoregressive integrated moving average modeling. The theory is illustrated with results obtained by using measurements performed in 2010 at Timisoara (southern Europe). Simple modeling taking into account internal dynamics with one lag history brings substantial reduction of misclassification compared with the persistence approach (to less than 57%). When longer history is considered, all the lags up toat least 8 are important. The seasonal changes are rather concentrated to low lags. Better performance is associated with a more stable radiative regime. More involved models add external influences (such as sun elevation angle or astrono
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LD12009" target="_blank" >LD12009: Advanced methods for energy production forecasting by photovoltaic systems using high resolution NWP models</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Applied Statistics
ISSN
0266-4763
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
1174-1188
UT code for WoS article
000334073100002
EID of the result in the Scopus database
—