All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Topological Aspects of Infinitude of Primes in Arithmetic Progressions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00446412" target="_blank" >RIV/67985807:_____/15:00446412 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4064/cm140-2-5" target="_blank" >http://dx.doi.org/10.4064/cm140-2-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/cm140-2-5" target="_blank" >10.4064/cm140-2-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Topological Aspects of Infinitude of Primes in Arithmetic Progressions

  • Original language description

    We investigate properties of coset topologies on commutative domains with an identity, in particular, the S-coprime topologies defined by Marko and Porubský (2012) and akin to the topology defined by Furstenberg (1955) in his proof of the infinitude of rational primes. We extend results about the infinitude of prime or maximal ideals related to the Dirichlet theorem on the infinitude of primes from Knopfmacher and Porubský (1997), and correct some results from that paper. Then we determine cluster points for the set of primes and sets of primes appearing in arithmetic progressions in S-coprime topologies on Z. Finally, we give a new proof for the infinitude of prime ideals in number fields.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F12%2F2351" target="_blank" >GAP201/12/2351: Distribution and metric properties of number sequences and their applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Colloquium Mathematicum

  • ISSN

    0010-1354

  • e-ISSN

  • Volume of the periodical

    140

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    17

  • Pages from-to

    221-237

  • UT code for WoS article

    000357600800005

  • EID of the result in the Scopus database