New Quasi-Newton Method for Solving Systems of Nonlinear Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00473663" target="_blank" >RIV/67985807:_____/17:00473663 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.21136/AM.2017.0253-16" target="_blank" >http://dx.doi.org/10.21136/AM.2017.0253-16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2017.0253-16" target="_blank" >10.21136/AM.2017.0253-16</a>
Alternative languages
Result language
angličtina
Original language name
New Quasi-Newton Method for Solving Systems of Nonlinear Equations
Original language description
We propose a new Broyden method for solving systems of nonlinear equations, which uses the first derivatives, but is more efficient than the Newton method (measured by the computational time) for larger dense systems. The new method updates QR decompositions of nonsymmetric approximations of the Jacobian matrix, so it requires O(n^2) arithmetic operations per iteration in contrast with the Newton method, which requires O(n^3) operations per iteration. Computational experiments confirm the high efficiency of the new method.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA13-06684S" target="_blank" >GA13-06684S: Iterative Methods in Computational Mathematics: Analysis, Preconditioning, and Applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
14
Pages from-to
121-134
UT code for WoS article
000411068700001
EID of the result in the Scopus database
2-s2.0-85015619483