All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolution Strategies for Deep Neural Network Models Design

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00478624" target="_blank" >RIV/67985807:_____/17:00478624 - isvavai.cz</a>

  • Result on the web

    <a href="http://ceur-ws.org/Vol-1885/159.pdf" target="_blank" >http://ceur-ws.org/Vol-1885/159.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolution Strategies for Deep Neural Network Models Design

  • Original language description

    Deep neural networks have become the state-of art methods in many fields of machine learning recently. Still, there is no easy way how to choose a network architecture which can significantly influence the network performance. This work is a step towards an automatic architecture design. We propose an algorithm for an optimization of a network architecture based on evolution strategies. The algorithm is inspired by and designed directly for the Keras library [3] which is one of the most common implementations of deep neural networks. The proposed algorithm is tested on MNIST data set and the prediction of air pollution based on sensor measurements, and it is compared to several fixed architectures and support vector regression.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA15-18108S" target="_blank" >GA15-18108S: Model complexity of neural, radial, and kernel networks</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings ITAT 2017: Information Technologies - Applications and Theory

  • ISBN

    978-1974274741

  • ISSN

    1613-0073

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    159-166

  • Publisher name

    Technical University & CreateSpace Independent Publishing Platform

  • Place of publication

    Aachen & Charleston

  • Event location

    Martinské hole

  • Event date

    Sep 22, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article