Asynchronous Evolution of Convolutional Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00494108" target="_blank" >RIV/67985807:_____/18:00494108 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-2203/80.pdf" target="_blank" >http://ceur-ws.org/Vol-2203/80.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Asynchronous Evolution of Convolutional Networks
Original language description
Due to many successful practical applications, deep neural networks and convolutional networks have become the state-of-art machine learning methods recently. The choice of network architecture for the task at hand is typically made by trial and error. This work deals with an automatic data-dependent architecture design. We propose an algorithm for optimization of architecture of convolutional network based on asynchronous evolution. The algorithm is inspired by and designed directly for the Keras library which is one of the most common implementations of deep neural networks. The proposed algorithm is successfully tested on MNIST and Fashion-MNIST data sets.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-23827S" target="_blank" >GA18-23827S: Capabilities and limitations of shallow and deep networks</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ITAT 2018: Information Technologies – Applications and Theory. Proceedings of the 18th conference ITAT 2018
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
6
Pages from-to
80-85
Publisher name
Technical University & CreateSpace Independent Publishing Platform
Place of publication
Aachen
Event location
Plejsy
Event date
Sep 21, 2018
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—