All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolving Keras Architectures for Sensor Data Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00478496" target="_blank" >RIV/67985807:_____/17:00478496 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.15439/2017F241" target="_blank" >http://dx.doi.org/10.15439/2017F241</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15439/2017F241" target="_blank" >10.15439/2017F241</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolving Keras Architectures for Sensor Data Analysis

  • Original language description

    Deep neural networks enjoy high interest and have become the state-of-art methods in many fields of machine learning recently. Still, there is no easy way for a choice of network architecture. However, the choice of architecture can significantly influence the network performance. This work is the first step towards an automatic architecture design. We propose a genetic algorithm for an optimization of a network architecture. The algorithm is inspired by and designed directly for the Keras library [1] that is one of the most common implementations of deep neural networks. The target application is the prediction of air pollution based on sensor measurements. The proposed algorithm is evaluated on experiments on sensor data and compared to several fixed architectures and support vector regression.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA15-18108S" target="_blank" >GA15-18108S: Model complexity of neural, radial, and kernel networks</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2017 Federated Conference on Computer Science and Information Systems

  • ISBN

    978-83-946253-7-5

  • ISSN

    2300-5963

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    109-112

  • Publisher name

    Polish Information Processing Society

  • Place of publication

    Warszawa

  • Event location

    Prague

  • Event date

    Sep 3, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000417412800015