All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Generalization of Erdős' Matching Conjecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00489948" target="_blank" >RIV/67985807:_____/18:00489948 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0284241" target="_blank" >http://hdl.handle.net/11104/0284241</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37236/7420" target="_blank" >10.37236/7420</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Generalization of Erdős' Matching Conjecture

  • Original language description

    Let H = (V,epsilon ) be an r-uniform hypergraph on n vertices and fix a positive integer k such that 1 <= k <= r. A k-matching of H is a collection of edges M subset of epsilon such that every subset of V whose cardinality equals k is contained in at most one element of M. The k-matching number of H is the maximum cardinality of a k-matching. A well-known problem, posed by Erdos, asks for the maximum number of edges in an r-uniform hypergraph under constraints on its 1-matching number. In this article we investigate the more general problem of determining the maximum number of edges in an r-uniform hypergraph on n vertices subject to the constraint that its k-matching number is strictly less than a. The problem can also be seen as a generalization of the well-known k-intersection problem. We propose candidate hypergraphs for the solution of this problem, and show that the extremal hypergraph r is among this candidate set when n >= 4r ((r)(k) )(2). a.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ16-07822Y" target="_blank" >GJ16-07822Y: Extremal graph theory and applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Combinatorics

  • ISSN

    1077-8926

  • e-ISSN

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    P2.21

  • UT code for WoS article

    000432170100005

  • EID of the result in the Scopus database

    2-s2.0-85046900752