Proof Theory for Positive Logic with Weak Negation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00505107" target="_blank" >RIV/67985807:_____/20:00505107 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11225-019-09869-y" target="_blank" >http://dx.doi.org/10.1007/s11225-019-09869-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11225-019-09869-y" target="_blank" >10.1007/s11225-019-09869-y</a>
Alternative languages
Result language
angličtina
Original language name
Proof Theory for Positive Logic with Weak Negation
Original language description
Proof-theoretic methods are developed for subsystems of Johansson's logic obtained by extending the positive fragment of intuitionistic logic with weak negations. These methods are exploited to establish properties of the logical systems. In particular, cut-free complete sequent calculi are introduced and used to provide a proof of the fact that the systems satisfy the Craig interpolation property. Alternative versions of the calculi are later obtained by means of an appropriate loop-checking history mechanism. Termination of the new calculi is proved, and used to conclude that the considered logical systems are PSPACE-complete.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-04630S" target="_blank" >GA17-04630S: Predicate graded logics and their applications to computer science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Logica
ISSN
0039-3215
e-ISSN
—
Volume of the periodical
108
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
38
Pages from-to
649-686
UT code for WoS article
000549716200001
EID of the result in the Scopus database
2-s2.0-85069155898