Automata Complete Computation with Hodgkin-Huxley Neural Networks Composed of Synfire Rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00524679" target="_blank" >RIV/67985807:_____/20:00524679 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.neunet.2020.03.019" target="_blank" >http://dx.doi.org/10.1016/j.neunet.2020.03.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neunet.2020.03.019" target="_blank" >10.1016/j.neunet.2020.03.019</a>
Alternative languages
Result language
angličtina
Original language name
Automata Complete Computation with Hodgkin-Huxley Neural Networks Composed of Synfire Rings
Original language description
Synfire rings are neural circuits capable of conveying synchronous, temporally precise and self-sustained activities in a robust manner. We propose a cell assembly based paradigm for abstract neural computation centered on the concept of synfire rings. More precisely, we empirically show that Hodgkin–Huxley neural networks modularly composed of synfire rings are automata complete. We provide an algorithmic construction which, starting from any given finite state automaton, builds a corresponding Hodgkin–Huxley neural network modularly composed of synfire rings and capable of simulating it. We illustrate the correctness of the construction on two specific examples. We further analyze the stability and robustness of the construction as a function of changes in the ring topologies as well as with respect to cell death and synaptic failure mechanisms, respectively. These results establish the possibility of achieving abstract computation with bio-inspired neural networks. They might constitute a theoretical ground for the realization of biological neural computers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytical Foundations of Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Networks
ISSN
0893-6080
e-ISSN
—
Volume of the periodical
126
Issue of the periodical within the volume
June
Country of publishing house
GB - UNITED KINGDOM
Number of pages
23
Pages from-to
312-334
UT code for WoS article
000536448500009
EID of the result in the Scopus database
2-s2.0-85082865630