Turing Computation with Neural Networks Composed of Synfire Rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00562577" target="_blank" >RIV/67985807:_____/22:00562577 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.1109/IJCNN55064.2022.9892332" target="_blank" >https://dx.doi.org/10.1109/IJCNN55064.2022.9892332</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN55064.2022.9892332" target="_blank" >10.1109/IJCNN55064.2022.9892332</a>
Alternative languages
Result language
angličtina
Original language name
Turing Computation with Neural Networks Composed of Synfire Rings
Original language description
Synfire rings are fundamental neural circuits capable of conveying self-sustained activities in a robust and temporally precise manner. We propose a Turing-complete paradigm for neural computation based on synfire rings. More specifically, we provide an algorithmic procedure which, for any fixed-space Turing machine, builds a corresponding Boolean neural network composed of synfire rings capable of simulating it. As a consequence, any fixed-space Turing machine with tapes of length N can be simulated in linear time by some Boolean neural network composed of O(N) rings and cells. The construction can naturally be extended to general Turing machines. Therefore, any Turing machine can be simulated in linear time by some Boolean neural network composed of infinitely many synfire rings. The linear time simulation relies on the possibility to mimic the behavior of the machines. In the long term, these results might contribute to the realization of biological neural computers.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2022 International Joint Conference on Neural Networks (IJCNN) Proceedings
ISBN
978-1-7281-8671-9
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
IEEE
Place of publication
Piscataway
Event location
Padua
Event date
Jul 18, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000867070903092