All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust Optimal-Size Implementation of Finite State Automata with Synfire Ring-Based Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00503688" target="_blank" >RIV/67985807:_____/19:00503688 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-30487-4_62" target="_blank" >http://dx.doi.org/10.1007/978-3-030-30487-4_62</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-30487-4_62" target="_blank" >10.1007/978-3-030-30487-4_62</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust Optimal-Size Implementation of Finite State Automata with Synfire Ring-Based Neural Networks

  • Original language description

    Synfire rings are important neural circuits capable of conveying synchronous, temporally precise and self-sustained activities in a robust manner. We describe an optimal-size implementation of finite state automata with neural networks composed of synfire rings. More precisely, given any finite automaton, we build a corresponding neural network partly composed of synfire rings capable of simulating it. The synfire ring activities encode the successive states of the automaton throughout its computation. The robustness of the network results from its architecture, which is composed of synfire rings and duplicated core components. In addition, the network's size is asymptotically optimal: for an automaton with n states, the network has theta (√n) cells.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytical Foundations of Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. Proceedings, Part I

  • ISBN

    978-3-030-30486-7

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    806-818

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Munich

  • Event date

    Sep 17, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article