Robust Optimal-Size Implementation of Finite State Automata with Synfire Ring-Based Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00503688" target="_blank" >RIV/67985807:_____/19:00503688 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-30487-4_62" target="_blank" >http://dx.doi.org/10.1007/978-3-030-30487-4_62</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-30487-4_62" target="_blank" >10.1007/978-3-030-30487-4_62</a>
Alternative languages
Result language
angličtina
Original language name
Robust Optimal-Size Implementation of Finite State Automata with Synfire Ring-Based Neural Networks
Original language description
Synfire rings are important neural circuits capable of conveying synchronous, temporally precise and self-sustained activities in a robust manner. We describe an optimal-size implementation of finite state automata with neural networks composed of synfire rings. More precisely, given any finite automaton, we build a corresponding neural network partly composed of synfire rings capable of simulating it. The synfire ring activities encode the successive states of the automaton throughout its computation. The robustness of the network results from its architecture, which is composed of synfire rings and duplicated core components. In addition, the network's size is asymptotically optimal: for an automaton with n states, the network has theta (√n) cells.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytical Foundations of Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. Proceedings, Part I
ISBN
978-3-030-30486-7
ISSN
0302-9743
e-ISSN
—
Number of pages
13
Pages from-to
806-818
Publisher name
Springer
Place of publication
Cham
Event location
Munich
Event date
Sep 17, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—