Liar's Domination in Unit Disk Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00532253" target="_blank" >RIV/67985807:_____/20:00532253 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2020.08.029" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2020.08.029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2020.08.029" target="_blank" >10.1016/j.tcs.2020.08.029</a>
Alternative languages
Result language
angličtina
Original language name
Liar's Domination in Unit Disk Graphs
Original language description
In this article, we study a variant of the minimum dominating set problem known as the minimum liar's dominating set (MLDS) problem. We prove that the MLDS problem is NP-hard in unit disk graphs. We point out that the approximation guarantee of for the approximation algorithm for unit disk graphs proposed by Banerjee and Bhore (2019) [11] is not correct and we propose a simple time 7.31-factor approximation algorithm, where n and m are the number of vertices and edges, respectively, in the given unit disk graph. Finally, we prove that the MLDS problem admits a polynomial-time approximation scheme.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GJ19-06792Y" target="_blank" >GJ19-06792Y: Structural properties of visibility in terrains and farthest color Voronoi diagrams</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
845
Issue of the periodical within the volume
12 December 2020
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
38-49
UT code for WoS article
000580529400003
EID of the result in the Scopus database
2-s2.0-85090315450