The independence number of HH-homogeneous graphs and a classification of MB-homogeneous graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00537320" target="_blank" >RIV/67985807:_____/20:00537320 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2019.103063" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2019.103063</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2019.103063" target="_blank" >10.1016/j.ejc.2019.103063</a>
Alternative languages
Result language
angličtina
Original language name
The independence number of HH-homogeneous graphs and a classification of MB-homogeneous graphs
Original language description
We show that the independence number of a countably infinite connected HH-homogeneous graph that does not contain the Rado graph as a spanning subgraph is finite and present a classification of MB-homogeneous graphs up to bimorphism-equivalence as a consequence.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
85
Issue of the periodical within the volume
March 2020
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
103063
UT code for WoS article
000514012100010
EID of the result in the Scopus database
2-s2.0-85075577021