On the total versions of 1-2-3-Conjecture for graphs and hypergraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00571157" target="_blank" >RIV/67985807:_____/23:00571157 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.dam.2023.03.021" target="_blank" >https://doi.org/10.1016/j.dam.2023.03.021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2023.03.021" target="_blank" >10.1016/j.dam.2023.03.021</a>
Alternative languages
Result language
angličtina
Original language name
On the total versions of 1-2-3-Conjecture for graphs and hypergraphs
Original language description
In 2004, Karoński, Łuczak and Thomason proposed 1-2-3-Conjecture: For every nice graph G there is an edge weighting function w:E(G)→{1,2,3} such that the induced vertex coloring is proper. After that, the total versions of this conjecture were suggested in the literature and recently, Kalkowski et al. have generalized this conjecture to hypergraphs. In this paper, some previously known results on the total versions are improved. Moreover, an affirmative answer is given to the conjecture for some well-known families of hypergraphs like complete n-partite hypergraphs, paths, cycles, theta hypergraphs and some geometric planes. Also, these hypergraphs are characterized based on the corresponding parameter.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-08740S" target="_blank" >GA19-08740S: Embedding, Packing and Limits in Graphs</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
1872-6771
Volume of the periodical
336
Issue of the periodical within the volume
15 September 2023
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
1-10
UT code for WoS article
001054239700001
EID of the result in the Scopus database
2-s2.0-85151307260