All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Energy Complexity of Fully-Connected Layers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00573359" target="_blank" >RIV/67985807:_____/23:00573359 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.1007/978-3-031-43085-5_1" target="_blank" >https://dx.doi.org/10.1007/978-3-031-43085-5_1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-43085-5_1" target="_blank" >10.1007/978-3-031-43085-5_1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Energy Complexity of Fully-Connected Layers

  • Original language description

    The energy efficiency of processing convolutional neural networks (CNNs) is crucial for their deployment on low-power mobile devices. In our previous work, a simplified theoretical hardware-independent model of energy complexity for CNNs has been introduced. This model has been experimentally shown to asymptotically fit the power consumption estimates of CNN hardware implementations on different platforms. Here, we pursue the study of this model from a theoretically perspective in the context of fully-connected layers. We present two dataflows and compute their associated energy costs to obtain upper bounds on the optimal energy. Using the weak duality theorem, we further prove a matching lower bound when the buffer memory is divided into two fixed parts for inputs and outputs. The optimal energy complexity for fully-connected layers in the case of partitioned buffer ensues. These results are intended to be generalized to the case of convolutional layers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Computational Intelligence. IWANN 2023 Proceedings, Part I

  • ISBN

    978-3-031-43084-8

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    3-15

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Ponta Delgada

  • Event date

    Jun 19, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001155313400001