Energy Complexity of Convolutional Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00584980" target="_blank" >RIV/67985807:_____/24:00584980 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26230/24:PU151895
Result on the web
<a href="https://doi.org/10.1162/neco_a_01676" target="_blank" >https://doi.org/10.1162/neco_a_01676</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/neco_a_01676" target="_blank" >10.1162/neco_a_01676</a>
Alternative languages
Result language
angličtina
Original language name
Energy Complexity of Convolutional Neural Networks
Original language description
The energy efficiency of hardware implementations of convolutional neural networks (CNNs) is critical to their widespread deployment in low-power mobile devices. Recently, a number of methods have been proposed for providing energy-optimal mappings of CNNs onto diverse hardware accelerators. Their estimated energy consumption is related to specific implementation details and hardware parameters, which does not allow for machine-independent exploration of CNN energy measures. In this letter, we introduce a simplified theoretical energy complexity model for CNNs, based on only a two-level memory hierarchy that captures asymptotically all important sources of energy consumption for different CNN hardware implementations. In this model, we derive a simple energy lower bound and calculate the energy complexity of evaluating a CNN layer for two common data flows, providing corresponding upper bounds. According to statistical tests, the theoretical energy upper and lower bounds we present fit asymptotically very well with the real energy consumption of CNN implementations on the Simba and Eyeriss hardware platforms, estimated by the Timeloop/Accelergy program, which validates the proposed energy complexity model for CNNs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Computation
ISSN
0899-7667
e-ISSN
1530-888X
Volume of the periodical
36
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
1601-1625
UT code for WoS article
001272123000003
EID of the result in the Scopus database
2-s2.0-85195394955