Energy Complexity Model for Convolutional Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00573373" target="_blank" >RIV/67985807:_____/23:00573373 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26230/23:PU149415
Result on the web
<a href="https://dx.doi.org/10.1007/978-3-031-44204-9_16" target="_blank" >https://dx.doi.org/10.1007/978-3-031-44204-9_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-44204-9_16" target="_blank" >10.1007/978-3-031-44204-9_16</a>
Alternative languages
Result language
angličtina
Original language name
Energy Complexity Model for Convolutional Neural Networks
Original language description
The energy efficiency of hardware implementations of convolutional neural networks (CNNs) is critical to their widespread deployment in low-power mobile devices. Recently, a plethora of methods have been proposed providing energy-optimal mappings of CNNs onto diverse hardware accelerators. Their estimated power consumption is related to specific implementation details and hardware parameters, which does not allow for machine-independent exploration of CNN energy measures. In this paper, we introduce a simplified theoretical energy complexity model for CNNs, based on only two-level memory hierarchy that captures asymptotically all important sources of power consumption of different CNN hardware implementations. We calculate energy complexity in this model for two common dataflows which, according to statistical tests, fits asymptotically very well the power consumption estimated by the Time/Accelergy program for convolutional layers on the Simba and Eyeriss hardware platforms. The model opens the possibility of proving principal limits on the energy efficiency of CNN hardware accelerators.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks and Machine Learning – ICANN 2023. Proceedings, Part X
ISBN
978-3-031-44203-2
ISSN
0302-9743
e-ISSN
—
Number of pages
13
Pages from-to
186-198
Publisher name
Springer
Place of publication
Cham
Event location
Heraklion
Event date
Sep 26, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001157311300016