All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Energy Complexity Model for Convolutional Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00573373" target="_blank" >RIV/67985807:_____/23:00573373 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26230/23:PU149415

  • Result on the web

    <a href="https://dx.doi.org/10.1007/978-3-031-44204-9_16" target="_blank" >https://dx.doi.org/10.1007/978-3-031-44204-9_16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-44204-9_16" target="_blank" >10.1007/978-3-031-44204-9_16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Energy Complexity Model for Convolutional Neural Networks

  • Original language description

    The energy efficiency of hardware implementations of convolutional neural networks (CNNs) is critical to their widespread deployment in low-power mobile devices. Recently, a plethora of methods have been proposed providing energy-optimal mappings of CNNs onto diverse hardware accelerators. Their estimated power consumption is related to specific implementation details and hardware parameters, which does not allow for machine-independent exploration of CNN energy measures. In this paper, we introduce a simplified theoretical energy complexity model for CNNs, based on only two-level memory hierarchy that captures asymptotically all important sources of power consumption of different CNN hardware implementations. We calculate energy complexity in this model for two common dataflows which, according to statistical tests, fits asymptotically very well the power consumption estimated by the Time/Accelergy program for convolutional layers on the Simba and Eyeriss hardware platforms. The model opens the possibility of proving principal limits on the energy efficiency of CNN hardware accelerators.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2023. Proceedings, Part X

  • ISBN

    978-3-031-44203-2

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    186-198

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Heraklion

  • Event date

    Sep 26, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001157311300016