All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximation of Binary-Valued Functions by Networks of Finite VC Dimension

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00577075" target="_blank" >RIV/67985807:_____/23:00577075 - isvavai.cz</a>

  • Result on the web

    <a href="https://dx.doi.org/10.1007/978-3-031-44207-0_40" target="_blank" >https://dx.doi.org/10.1007/978-3-031-44207-0_40</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-44207-0_40" target="_blank" >10.1007/978-3-031-44207-0_40</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximation of Binary-Valued Functions by Networks of Finite VC Dimension

  • Original language description

    Distributions of errors in approximation of binary-valued functions by networks with sets of input-output functions of finite VC dimension is investigated. Conditions on concentration of approximation errors around their mean values are derived in terms of growth functions of sets of input-output functions. Limitations of approximation capabilities of networks of finite VC dimension are discussed.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-02067S" target="_blank" >GA22-02067S: AppNeCo: Approximate Neurocomputing</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2023. Proceedings, Part I

  • ISBN

    978-3-031-44206-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    483-490

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Heraklion

  • Event date

    Sep 26, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001156955400040