All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Data Governance in Traffic Data: Anomaly Detection with Generalized Additive Models

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00604019" target="_blank" >RIV/67985807:_____/24:00604019 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21260/24:00379705

  • Result on the web

    <a href="https://doi.org/10.14311/NNW.2024.34.011" target="_blank" >https://doi.org/10.14311/NNW.2024.34.011</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/NNW.2024.34.011" target="_blank" >10.14311/NNW.2024.34.011</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Data Governance in Traffic Data: Anomaly Detection with Generalized Additive Models

  • Original language description

    The primary objective of the presented research is to enhance an existing data quality control application by integrating advanced anomaly detection mechanisms based on generalized additive models. This approach targets time- series traffic data, where traditional methods may fall short in identifying complex, non-linear patterns of anomalies. In collaboration with Simplity s.r.o., we are extending their current data quality assessment tool to incorporate generalized additive models, providing a more robust and dynamic solution for monitoring and ensuring the reliability of traffic datasets. The integration of these models aims to improve the accuracy of anomaly detection, leading to more effective data management in transport systems and contributing to higher standards of data quality in the field of traffic informatics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/CK04000189" target="_blank" >CK04000189: Data quality tools for ensuring system reliability of transport information centres</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    16

  • Pages from-to

    203-218

  • UT code for WoS article

    001414975800001

  • EID of the result in the Scopus database