Data Governance in Traffic Data: Anomaly Detection with Generalized Additive Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00604019" target="_blank" >RIV/67985807:_____/24:00604019 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21260/24:00379705
Result on the web
<a href="https://doi.org/10.14311/NNW.2024.34.011" target="_blank" >https://doi.org/10.14311/NNW.2024.34.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2024.34.011" target="_blank" >10.14311/NNW.2024.34.011</a>
Alternative languages
Result language
angličtina
Original language name
Data Governance in Traffic Data: Anomaly Detection with Generalized Additive Models
Original language description
The primary objective of the presented research is to enhance an existing data quality control application by integrating advanced anomaly detection mechanisms based on generalized additive models. This approach targets time- series traffic data, where traditional methods may fall short in identifying complex, non-linear patterns of anomalies. In collaboration with Simplity s.r.o., we are extending their current data quality assessment tool to incorporate generalized additive models, providing a more robust and dynamic solution for monitoring and ensuring the reliability of traffic datasets. The integration of these models aims to improve the accuracy of anomaly detection, leading to more effective data management in transport systems and contributing to higher standards of data quality in the field of traffic informatics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/CK04000189" target="_blank" >CK04000189: Data quality tools for ensuring system reliability of transport information centres</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
16
Pages from-to
203-218
UT code for WoS article
001414975800001
EID of the result in the Scopus database
—