All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cysteine residues in signal transduction and its relevance in pancreatic beta cells

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F23%3A00574027" target="_blank" >RIV/67985823:_____/23:00574027 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3389/fendo.2023.1221520" target="_blank" >https://doi.org/10.3389/fendo.2023.1221520</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fendo.2023.1221520" target="_blank" >10.3389/fendo.2023.1221520</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cysteine residues in signal transduction and its relevance in pancreatic beta cells

  • Original language description

    Cysteine is one of the least abundant but most conserved amino acid residues in proteins, playing a role in their structure, metal binding, catalysis, and redox chemistry. Thiols present in cysteines can be modified by post-translational modifications like sulfenylation, acylation, or glutathionylation, regulating protein activity and function and serving as signals. Their modification depends on their position in the structure, surrounding amino acids, solvent accessibility, pH, etc. The most studied modifications are the redox modifications by reactive oxygen, nitrogen, and sulfur species, leading to reversible changes that serve as cell signals or irreversible changes indicating oxidative stress and cell damage. Selected antioxidants undergoing reversible oxidative modifications like peroxiredoxin-thioredoxin system are involved in a redox-relay signaling that can propagate to target proteins. Cysteine thiols can also be modified by acyl moieties’ addition (derived from lipid metabolism), resulting in protein functional modification or changes in protein anchoring in the membrane. In this review, we update the current knowledge on cysteine modifications and their consequences in pancreatic β-cells. Because β-cells exhibit well-balanced redox homeostasis, the redox modifications of cysteines here serve primarily for signaling purposes. Similarly, lipid metabolism provides regulatory intermediates that have been shown to be necessary in addition to redox modifications for proper β-cell function and, in particular, for efficient insulin secretion. On the contrary, the excess of reactive oxygen, nitrogen, and sulfur species and the imbalance of lipids under pathological conditions cause irreversible changes and contribute to oxidative stress leading to cell failure and the development of type 2 diabetes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30202 - Endocrinology and metabolism (including diabetes, hormones)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Endocrinology

  • ISSN

    1664-2392

  • e-ISSN

    1664-2392

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    Jun 29

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    8

  • Pages from-to

    1221520

  • UT code for WoS article

    001027965300001

  • EID of the result in the Scopus database

    2-s2.0-85164981968