Holomorphic retractions and boundary Berezin transforms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00334144" target="_blank" >RIV/67985840:_____/09:00334144 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Holomorphic retractions and boundary Berezin transforms
Original language description
In in earlier paper, the first two authors have shown that the convolution of a function f continuous on the closure of a Cartan domain and a K-invariant finite measure mu on that domain is again continuous on the closure, and, moreover, its restrictionto any boundary face F depends only on the restriction of f to F and is equal to the convolution, in F of the latter restriction with settle measure mu(F) on F uniquely determined by mu. In this article, we give all explicit formula for mu(F) in terms ofF, showing in particular that for measures mu corresponding to the Berezin transforms the measures mu(F) again correspond to Berezin transforms, but with a. shift; in the value of the Wallach parameter. Finally, we also obtain a nice and simple description of the holomorphic retraction oil these domains which arises as the boundary limit of geodesic symmetries.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1019304" target="_blank" >IAA1019304: Function theory and operator theory in Bergman spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales de l'Institut Fourier
ISSN
0373-0956
e-ISSN
—
Volume of the periodical
59
Issue of the periodical within the volume
2
Country of publishing house
FR - FRANCE
Number of pages
17
Pages from-to
—
UT code for WoS article
000266138300009
EID of the result in the Scopus database
—