Discrete maximum principle for Poisson equation with mixed boundary conditions solved by hp-FEM
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00335918" target="_blank" >RIV/67985840:_____/09:00335918 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/09:00358615 RIV/61388998:_____/09:00358615
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Discrete maximum principle for Poisson equation with mixed boundary conditions solved by hp-FEM
Original language description
We present a proof of the discrete maximum principle (DMP) for the 1D Poisson equation equipped with mixed Dirichlet-Neumann boundary conditions. The problem is discretized using finite elements of arbitrary lengths and polynomial degrees (hp-FEM). We show that the DMP holds on all meshes with no limitations to the sizes and polynomial degrees of the elements.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Mathematics and Mechanics
ISSN
2070-0733
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
2
Country of publishing house
CN - CHINA
Number of pages
14
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—