Asymptotic behavior of resolvents of coaccretive operators in the Hilbert ball
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00358114" target="_blank" >RIV/67985840:_____/09:00358114 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Asymptotic behavior of resolvents of coaccretive operators in the Hilbert ball
Original language description
We study the resolvents of coaccretive operators in the Hilbert ball, with special emphasis on the asymptotic behavior of their compositions and metric convex combinations. We consider the case where the given coaccretive operators share a common fixed point inside the ball, as well as the case where they share a common sink point an its boundary. We establish weak convergence in the former case and strong convergence in the latter. We also present two related convergence results for a continuous implicit scheme.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F06%2F0018" target="_blank" >GA201/06/0018: Topological structures in functional analysis</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
70
Issue of the periodical within the volume
9
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
—
UT code for WoS article
000264691300017
EID of the result in the Scopus database
—