Applications of ball spaces theory: Fixed point theorems in semimetric spaces and ball convergence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00567216" target="_blank" >RIV/67985840:_____/23:00567216 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11784-022-01030-y" target="_blank" >https://doi.org/10.1007/s11784-022-01030-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11784-022-01030-y" target="_blank" >10.1007/s11784-022-01030-y</a>
Alternative languages
Result language
angličtina
Original language name
Applications of ball spaces theory: Fixed point theorems in semimetric spaces and ball convergence
Original language description
In the paper, we apply some of the results from the theory of ball spaces in semimetric setting. This allows us to obtain fixed point theorems which we believe to be unknown to this day. As a byproduct, we obtain the equivalence of some different notions of completeness in semimetric spaces where the distance function is 1-continuous. In the second part of the article, we generalize the Caristi-Kirk results for b-metric spaces. Additionally, we obtain a characterization of semicompleteness for 1-continuous b-metric spaces via a fixed point theorem analogous to a result of Suzuki. In the epilogue, we introduce the concept of convergence in ball spaces, based on the idea that balls should resemble closed sets in topological sets. We prove several of its properties, compare it with convergence in semimetric spaces and pose several open questions connected with this notion.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Fixed Point Theory and Applications
ISSN
1661-7738
e-ISSN
1661-7746
Volume of the periodical
25
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
26
Pages from-to
31
UT code for WoS article
000901234100002
EID of the result in the Scopus database
2-s2.0-85144292779